Evaluation #11	30 minutes	1.S1 - 22/03/2017

Exercice 1 (2):

Pour les suites suivantes (définies sur IN), montrer qu'elles sont ou ne sont pas arithmétiques :

a)
$$u_n = 4n - 5$$

b)
$$w_n = n^2 - 2n + 1$$

Exercice 2 (3)

Soit (u_n) la suite définie par : $\begin{cases} u_1 = -2 \\ u_{n+1} = 3 u_n \end{cases}$

- a) Cette suite est-elle arithmétique ? Géométrique ? Aucun des deux ?
- b) Donner la formule explicite de u_n
- c) En déduire u_{15}
- d) Calculer $\sum_{k=3}^{8} u_k$

Exercice 3 (3)

Soit (v_n) la suite définie par : $\begin{cases} v_0 = -30 \\ v_{n+1} = v_n + 3 \end{cases}$

- a) Cette suite est-elle arithmétique ? Géométrique ? Aucun des deux ?
- b) Donner la fomule explicite de v_n
- c) En déduire v_{1986} .
- d) Calculer $\sum_{k=0}^{100} v_k$

Exercice 4 : (3)

Soit (w_n) la suite définie par $\begin{cases} w_0 = 3 \\ w_{n+1} = 2w_n - 4 \end{cases}$

- a) Calculer w_{λ}
- b) Soit $t_n = w_n 4$. Montrer que (t_n) est une suite géométrique ; et en préciser la raison et le premier terme.
- c) En déduire une formule explicite pour t_n , puis pour w_n

Evaluation #11 30 minutes 1.S1 – 22/03/

Exercice 1 (2):

Pour les suites suivantes (définies sur N), montrer qu'elles sont ou ne sont pas arithmétiques :

a)
$$u_n = 4n - 5$$

a)
$$u_n = 4n - 5$$
 b) $w_n = n^2 - 2n + 1$

Exercice 2 (3)

Soit (u_n) la suite définie par : $\begin{cases} u_1 = -2 \\ u_{n+1} = 3 u_n \end{cases}$

- a) Cette suite est-elle arithmétique ? Géométrique ? Aucun des deux ?
- b) Donner la formule explicite de u_n
- c) En déduire u_{15}
- d) Calculer $\sum_{k=1}^{8} u_k$

Exercice 3 (3)

Soit (v_n) la suite définie par : $\begin{cases} v_0 = -30 \\ v_{n+1} = v_n + 3 \end{cases}$

- a) Cette suite est-elle arithmétique ? Géométrique ? Aucun des deux ?
- b) Donner la fomule explicite de v_n
- c) En déduire v_{1986} .
- d) Calculer $\sum_{k=0}^{100} v_k$

Exercice 4 : (3)

Soit (w_n) la suite définie par $\begin{cases} w_0 = 3 \\ w_{n+1} = 2w_n - 4 \end{cases}$

- a) Calculer w_{\star}
- b) Soit $t_n = w_n 4$. Montrer que (t_n) est une suite géométrique ; et en préciser la raison et le premier terme.
- c) En déduire une formule explicite pour t_n , puis pour w_n